言情书阁

手机浏览器扫描二维码访问

第六百一十章 埃尔德什-格雷厄姆问题数论(第1页)

公元前1650年左右的古埃及数学典籍《莱因德数学纸草书》,其中记录了古埃及人如何将有理数表示为单位分数之和。

这里有{2,3,7,12,15,18,21,29,32,36}10个数字组成的一个数集,我们可以选择其中的2、3、12、18、36,就能得到12+13+112+118+136=1。

单位分数就是分子是1的分数,或者也可以说是正整数的倒数,它们是当时古埃及数字系统中唯一一类分数,他们需要用单位分数来表示其他更复杂的分数,比如将34写作12和14的和。

到了20世纪70年代,有关这类分数的问题再次引起了一些数学家的兴趣。当时,数学家埃尔德什(PaulErd?s)和格雷厄姆(RonaldGraham)在探索想要设计出不满足条件的整数集有多难,也就是说,一个整数集中不能有任何子集,其倒数之和等于1。

如果A是N的子集,A具有正密度,那么存在有限的S是A的子集,使得其中数的倒数和为1。在此,数集A是自然数集的子集,无论你怎么数下去,都存在一种非零的概率,会遇到集合A中的一个数字,那么A就具有正密度。

猜想提出约半个世纪后,牛津大学数学家ThomasBloom证明了它。

举个简单的例子,A是一个包含所有大于1的奇数的集合,它属于自然数集的子集,并满足正密度的条件,因为无论你数到10亿还是100亿,也一定会遇到奇数。然后,我们可以在A中找到有限子集S={3,5,7,9,11,33,35,45,55,77,105},而所有这些数的倒数相加恰好等于1。

这理解起来并没有那么困难,但证明它显然就变成另一回事了。那就变成了一个大得多、复杂得多的问题。对不少数学家来说,似乎找不到什么显而易见的数学工具来解决它。

数学家ErnieCroot,他解决了所谓的埃尔德什-格雷厄姆问题的着色版本。

这是一种更弱的证明。可以这么理解,在着色版本中,整数被随机地分类,指定放到不同颜色的桶中。猜想预测,无论这种分类中用到了多少个桶,至少会有一个桶包含一个倒数之和等于1的整数子集。

Croot这篇发表于2003年的论文引入了来自调和分析的强大的新方法,那是一个与微积分密切相关的数学分支。

着色版本和密度版本非常相似,但它们在一个非常重要的方面却有所不同。在着色问题中,整个数集A被分成了不同的“桶”,具体的分割方法并不重要。数学家要证明的是,有一个“桶”里的数字满足条件。这正是Croot在论文里构建的证明,表明了至少会有一个“桶”里包含足够多具有低素因子的数字,用数学术语来说就是光滑数(smoothnumber),从而满足定理。

这可以看作证明的一条捷径,但在密度版本中,这样的捷径并不存在。当Bloom看到这篇证明后,却认为这种方法要比人们普遍认为的更强,那实际上证明了密度问题的一个特例。Bloom谦虚地表示,他所做的“只是又推了一下那扇已经打开的门”。

粗略来说,先前的证明依赖于一类被称为指数和的整数。指数和可以分成两个部分,分别是优弧贡献,也就是我们可以明确计算并且很大的部分,以及劣弧贡献,也就是我们不知道如何计算,但能证明很小的部分。

先前证明的巧妙之处在于,Croot想到了一种思考劣弧贡献的新方法,把它变成了一类不同的问题。他没有试图计算数值,而是研究了这个集合中倍数是如何沿着数轴分布的。

在此基础上,Bloom将它进一步改进成适用于密度版本,进行了更多“局部”处理。在Bloom的新论文中,他将自己的方法解释为“Croot引入的方法的一种更强形式”。

同时,Bloom没有直接寻找倒数之和为1的答案,而是先找到了倒数相加更小的数集,然后再把它们当作“零件”,最终构建出想要的答案。这进一步帮助简化了过程。

Bloom的新证明受到了许多数学家的赞赏,但这显然不是数集与和的问题探索的终点。

数论一直在寻找数字中的隐藏结构。当数论学家遇到一种似乎无可避免的数字模式时,他们会不断测试这种模式的稳定程度,探索它的边界和极限,从而挖掘出埋藏在数字中的新信息。

在过去20年间,组合与分析数论都有了很大发展,让数学家能够以全新的视角看待许多古老的问题。同时,在计算机的帮助下,以更严格的方式检验证明也成为可能。

喜欢数学心请大家收藏:()数学心

宗门全是美强惨,小师妹是真疯批  我一枪一剑杀穿大陆  玄灵界都知道我柔弱可怜但能打  摊牌了,我爹是绝顶高手!  新人驾到  大明:开局气疯朱元璋,死不登基  快穿之炮灰得偿所愿  重生在宝可梦,我的后台超硬  译文欣赏:博伽瓦谭  永恒大陆之命运  国运:拥有多重身份的我很合理吧  哦豁!虐文炮灰不干了!  穿到八零,我自带锦鲤系统!  至尊战皇  混迹娱乐圈的日子  在下潘凤,字无双  农夫是概念神?三叶草了解一下!  我的徒弟不对劲  暗无  穿成商户女摆烂,竟然还要逃难!  

热门小说推荐
田野花香(乡村猎艳)

田野花香(乡村猎艳)

陈炎是一个混得极度没出息的大学生,阴差阳错的在阳台上喝着闷酒的时候被一个中年人吓得掉下楼下,醒来的时候却发现是在自己的高中时代。经历了惨败的婚姻和现实的残酷,陈炎决定好好的利用自己机会推倒所有的美女,清纯的学生妹,只知道埋头读书的校花MM,风骚无比的成熟美妇,饥渴了N多年的迷人寡妇。重生了,干那么多大事有什么用!手里掐着钱去糟蹋别人的闺女和老婆才是王道!...

异界召唤之千古群雄

异界召唤之千古群雄

这里有西楚霸王‘项羽’。这里有绝代杀神‘白起’。这里有千古奇人‘鬼谷子’。这里有西府赵王‘李元霸’。这里有盖世猛将‘吕布’。这是一个开挂的故事,生死看淡,不服就干!人呢?快进来扶扶朕(疯狂暗示加入书架),朕要拿传国玉玺,给读者老爷们砸核桃!什么?不吃核桃?没关系,拿朕的金箍棒来。给读者老爷们先剔剔牙,再随朕前往...

1号新妻:老公,宠上瘾!

1号新妻:老公,宠上瘾!

被继母逼迫,她走投无路,和神秘富豪签定协议嫁进豪门。婚后三年,富豪老公把她宠上天。只除了没有生下继承人。豪华别墅里,裴七七气愤地将报纸砸在男人身上这上面说我是不下蛋的母鸡,唐煜,明明就是你的问题。男人放下报纸,一本正经地赞同小妻子的话怎么能乱写呢,你分明属猪!唐!煜!她气得跳脚!男人轻笑有没有孩...

潜龙

潜龙

6远本是一个普通的学生,但有一天,他忽然成了龙,从此之后,他就开始牛逼起来本书已经上架,求订阅求评论求互动求推荐票求金钻求收藏!给我几分钟,让我们一起见证一个高中生的传奇!各位书友要是觉得潜龙还不错的话请不要忘记向您...

超强神龙进化系统

超强神龙进化系统

从小在孤儿院长大的敖问,一次意外死亡,重生为蛇,但是上天赐予他神龙进化系统这系统可以穿越万界,可以帮助他蜕蛇成龙!从此敖问为了不想平凡过完一生,开始了轰轰烈烈的进化之路。敖问可以跟人类结婚生子吗?系统你自己试试看,不就知道了吗?黑暗流无敌流装逼流微度PS胆小慈悲心勿进。...

快穿:我只想种田

快穿:我只想种田

别被书名骗了,取名废,其实就是女强无CP,村姑背景系统逆袭流,也俗称慢穿泥石流,凶杀末世武侠仙侠魔法啥都有,还有,新书820不见不散。官方群满一千粉丝值进(五九零六五三四八三)后援群,满一万粉丝值进VIP群。PS本文无CP...

每日热搜小说推荐