手机浏览器扫描二维码访问
第一题是一道代数题,an是一道多项式之和,求证:当正整数n≥2时,a(n+1)<an。
刚看见这题的时候,陆时羡还有些没有思路,于是一下子就顿在那里了。
毕竟纯粹的代数题,非常考验人的逻辑联系思维能力。
难道连第一道证明题都做不出来?这已经是最简单的了。
陆时羡忽然紧张起来,如果连第一题都做不出来,绝对是对他后面题目解答的一个巨大打击。
他轻吐一口气,慢慢迫使自己平静下来。
越是紧张越不能着急。
陆时羡再次审题,忽然发现自己陷入了一个误区,证明这种比大小的题目,何必将其分别代入后再比呢?
他只需要转换一下思维方式。
A与B比大小也可以转换成A与B比差或者A与B比商。
如果A-B最后的结果大于零,或者AB的结果大于1,那就可以说明A大于B.
想到这,陆时羡的眼睛越来越亮。
他在草稿纸上飞快地验算,对于an式,可以利用乘法分配律将n+1单独分离出来。
再得出对任意的正整数n≥2,an-a(n+1)最后的简化式。
最后证明简化式大于零。
故a(n+1)<an。
此题得证。
将这道题解决,陆时羡长松一口气,开始看下一题。
第二题是一道平面解析几何。
题目大意是对勾函数和一条直线得到的两个交点,然后求交点在对勾函数上两条切线的交点轨迹是多少?
不得不说,如果逻辑思维能力不够,光是看题目就足够让你看晕了。
不过说起来,这种题还是陆时羡的强项,他在数学里最擅长的就是将图形转化成代数。
无非就是求交点的坐标。
根据给出的条件联立方程组,由题意知,该方程在(0,+∞)上有两个相异的实根x1、x2,故k≠1,且Δ(1)式u003d1+4(k?1)>0,两个实根之和(2)式与之积(3)式都大于零。
由此可以得出直线的斜率k的取值范围,最后对对勾函数进行求导
化简得到直线l1和l2的方程(4)式和(5)式
(4)式-(5)式得xp的函数表达式(6)式
将(2)(3)两式代入(6)式得xpu003d2
(4)式+(5)式得yp的函数表达式(7)式
将(2)(3)的组合式代入(7)式得2ypu003d(3?2k)xp+2,而xpu003d2,得ypu003d4?2k
根据斜率k的取值范围2<yp<2.5
即点P的轨迹为(2,2),(2,2.5)两点间的线段(不含端点)
陆时羡写完这题,考试时间已经只剩下四十分钟了。
第二道大题还真的不难,思路很简单,就是计算过程有些复杂,同时也比较费时间,光这一个题目就花了他几十分钟。
来不及吐槽,陆时羡赶紧望向第三大题,
设函数f(x)对所有的实数x都满足f(x+2π)u003df(x)。
求证:存在4个函数fi(x)(iu003d1,2,3,4)满足:
四合院:我大伯父是易中海 阴神司探 错惹腹黑千金后顾总缠恋不休 农门医妃是个搅屎棍 小心!少奶奶带着乌鸦嘴杀回来了 快穿:又被大佬一见钟情了 四合院:开局拒绝一大爷换房 我穿成摄政王不断作死的原配前妻 心动健身房 诡异哭诉,快让他走吧! 诡异来袭,娇软美人靠魅力逃生 大理寺少卿的漫漫追妻之路 我从不搞笑,只想继承遗产 观人有道 时空大历险1:史前之旅 穿越兽世:兽夫狂情,日日溺爱上瘾 崩铁:我自逐火来,来此斩崩坏 1963,在机修厂当厨师的日子 北美悍警:从洛城巡警开始 傅先生别跑,我追定你了
一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...
市二中的金牌老师孙默落水后,来到了中州唐国,成了一个刚毕业的实习老师,竟然有了一个白富美的未婚妻,未婚妻竟然还是一所名校的校长,不过这名校衰败了,即将摘牌除名,进行废校处理孙默的开局,就是要帮助未婚妻坐稳校长之位,让学校重回豪门之列。孙默得到绝代名师系统后,点废成金,把一个个废物变成了天才,在孙默的指导下,学渣...
从农村考入大学的庾明毕业后因为成了老厂长的乘龙快婿,后随老厂长进京,成为中央某部后备干部,并被下派到蓟原市任市长。然而,官运亨通的他因为妻子的奸情发生了婚变,蓟原市急欲接班当权的少壮派势力以为他没有了后台,便扯住其年轻恋爱时与恋人的越轨行为作文章,将其赶下台,多亏老省长爱惜人才,推荐其参加跨国合资公司总裁竞聘,才东山再起然而,仕途一旦顺风,官运一发不可收拾由于庾明联合地方政府开展棚户区改造工程受到了中央领导和老百姓的赞誉。在省代会上,他又被推举到了省长的重要岗位。一介平民跃升为省长...
穿越到海贼世界,罗德得到可以抽取天赋能力的神器知识之书。剑斩天地,掌控雷霆,行走空间,信仰之力铸造地上神国!神恩如海,神威如狱。来到这个世界,就注定无敌于世。...
...
肉身不破,灵魂不灭,为了回到穿越前,为了再见到他可爱的女儿,不断引起星域乱战,一个不死强者,重启纪元,回归平凡,从此一个无敌奶爸诞生了。续集,正在新书连载着...