手机浏览器扫描二维码访问
欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余0.”
卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:
1、A关于加法成为一个Abel群(其零元素记作0);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环A还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环A还满足以下两条件,就称为“整环”(integraldomain):
5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;
6、ab=0=>a=0或b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。
喜欢数学心请大家收藏:()数学心
永恒大陆之命运 在下潘凤,字无双 混迹娱乐圈的日子 哦豁!虐文炮灰不干了! 我的徒弟不对劲 新人驾到 快穿之炮灰得偿所愿 农夫是概念神?三叶草了解一下! 我一枪一剑杀穿大陆 译文欣赏:博伽瓦谭 重生在宝可梦,我的后台超硬 至尊战皇 国运:拥有多重身份的我很合理吧 玄灵界都知道我柔弱可怜但能打 宗门全是美强惨,小师妹是真疯批 暗无 穿成商户女摆烂,竟然还要逃难! 穿到八零,我自带锦鲤系统! 大明:开局气疯朱元璋,死不登基 摊牌了,我爹是绝顶高手!
这小小的四合院,住着一群租房客,而陈阳则是房东。...
她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...
作为一个无节操无底线无尺度的三无大龄少女,男人于她而言不过是解决生理需求的生活用品,所以她并不在意他们视她如玩物,将她介绍给别人,搂着名门千金假装不认识她,故意贬低她否认与她的情史,利用她欺骗她甚至当众羞辱她。她很懒,懒得跟无所谓的人计较太多。但,等她识趣地走人了还指望她乖乖躺回他们身下?他们以为全世界的男人只有他们才长了根能用的东西?她只想说,呵呵。Nph文,6个男主,有处有非处,伪骨科。已完结~感谢所有妹子们!...
生死看淡,不服就干。...
段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...
一场人质救援行动中,因为救援失败而一蹶不振的龙牙队员张正选择退役归隐,此后国家神秘的龙牙小组真正意义上失去了最尖锐的兵器。几年后的张正再次出现势必要将这世界搅动得天翻地覆。...