言情书阁

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:

1、A关于加法成为一个Abel群(其零元素记作0);

2、乘法满足结合律:(a*b)*c=a*(b*c);

3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;

如果环A还满足以下乘法交换律,则称为“交换环”:

4、乘法交换律:a*b=b*a。

如果交换环A还满足以下两条件,就称为“整环”(integraldomain):

5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;

6、ab=0=>a=0或b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。

喜欢数学心请大家收藏:()数学心

永恒大陆之命运  在下潘凤,字无双  混迹娱乐圈的日子  哦豁!虐文炮灰不干了!  我的徒弟不对劲  新人驾到  快穿之炮灰得偿所愿  农夫是概念神?三叶草了解一下!  我一枪一剑杀穿大陆  译文欣赏:博伽瓦谭  重生在宝可梦,我的后台超硬  至尊战皇  国运:拥有多重身份的我很合理吧  玄灵界都知道我柔弱可怜但能打  宗门全是美强惨,小师妹是真疯批  暗无  穿成商户女摆烂,竟然还要逃难!  穿到八零,我自带锦鲤系统!  大明:开局气疯朱元璋,死不登基  摊牌了,我爹是绝顶高手!  

热门小说推荐
我的绝色美女房客

我的绝色美女房客

这小小的四合院,住着一群租房客,而陈阳则是房东。...

慕少,你老婆又重生了

慕少,你老婆又重生了

她死不瞑目,在江边守了三天三夜,来收尸的却不是她丈夫看着男人轻吻自己肿胀腐烂的尸体,她心中撼动不已,暗下许诺如果能重生,一定嫁给他!后来,她真的重生了,却成了他妹妹(⊙o⊙)慕容承说你再敢死给我看,我不介意变个态,和尸体洞房。她欲哭无泪,我滴哥!你早就变态了好么?!轻松搞笑,重口甜爽,可放心阅读...

真香实录

真香实录

作为一个无节操无底线无尺度的三无大龄少女,男人于她而言不过是解决生理需求的生活用品,所以她并不在意他们视她如玩物,将她介绍给别人,搂着名门千金假装不认识她,故意贬低她否认与她的情史,利用她欺骗她甚至当众羞辱她。她很懒,懒得跟无所谓的人计较太多。但,等她识趣地走人了还指望她乖乖躺回他们身下?他们以为全世界的男人只有他们才长了根能用的东西?她只想说,呵呵。Nph文,6个男主,有处有非处,伪骨科。已完结~感谢所有妹子们!...

一剑独尊

一剑独尊

生死看淡,不服就干。...

村野小邪医

村野小邪医

段飞是个倒霉的孩子,老爹被人陷害入狱,又遭遇对象退婚,开间小诊所给村里的人治病,连温饱都不行。可他从未放弃过努力,他坚信只要人不死,必定有站在人生巅峰的那天,最后他用枚小小的银针走上复仇之路,凭精湛的针灸获得无数美女青睐陪伴。这是个励志故事,段飞的崛起之路经受无数阴谋陷害,可他为了坚守正义毫不畏惧,视死如归跟邪恶力量做斗争。...

兵王传说

兵王传说

一场人质救援行动中,因为救援失败而一蹶不振的龙牙队员张正选择退役归隐,此后国家神秘的龙牙小组真正意义上失去了最尖锐的兵器。几年后的张正再次出现势必要将这世界搅动得天翻地覆。...

每日热搜小说推荐